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Vector Linear Programming in 
Zero-Sum Multicriteria Matrix Games 

F. R. FERNANDEZ l AND J. PUERTO 2 

Communicated by P. L. Yu 

Abstract. In this paper, a multiple-objective linear problem is derived 
from a zero-sum multicriteria matrix game. It is shown that the set of 
efficient solutions of this problem coincides with the set of Pareto- 
optimal security strategies (POSS) for one of the players in the original 
game. This approach emphasizes the existing similarities between the 
scalar and multicriteria matrix games, because in both cases linear pro- 
gramming can be used to solve the problems. It also leads to different 
scalarizations which are alternative ways to obtain the set of all POSS. 
The concept of ideal strategy for a player is introduced, and it is estab- 
lished that a pair of Pareto saddle-point strategies exists if both players 
have ideal strategies. Several examples are included to illustrate the 
results in the paper. 

Key Words, Game theory, multicriteria games, Pareto-optimal security 
strategies, vector linear programming, scalarization methods. 

1. Introduction 

Recently, much attention has been paid to game problems in which the 
payoff  is a multiple noncomparable  criteria vector (Refs. 1-3). One of  the 
reasons is that this approach represents better real-world applications of  
game theory (Refs. 4-5). In fact, each competitive situation that can be 
modeled as a scalar zero-sum game has its counterpart  as a multicriteria 
zero-sum game when more than one scenario has to be compared simulta- 
neously. In these situations, once the same strategy has to be used in different 
scenarios, conflicting interests appear  between different decision-makers as 
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well as within each individual. For instance, the production policies of two 
firms which are competing for a market can be seen as a scalar game. 
However, when they compete simultaneously in several markets, the multi- 
criteria approach has to be adopted. 

When cooperation is not allowed in the games, in general there is not 
a total order among the vector payoffs. Hence, comparing the payoff 
obtained by the players in multicriteria games is much more difficult than 
comparing them in scalar games, and the classical solution concepts are not 
applicable. 

For this reason, new solution concepts have been proposed in recent 
years (Refs. 2-3 and 6-7), and have been compared with the existing ones. 
Particularly, the concept of Pareto-optimal security strategy (POSS) 
becomes very important in order to solve a multicriteria game (Ref. 2). 

In Ref. 1, POSS in a zero-sum multicriteria matrix game were obtained 
for a player by scalarization of the original game. The main result in the 
paper states, using many intermediate steps, that an extension of the set of 
all security level vectors is a polyhedral set. This implies that the saddle-point 
solution of a game with strictly positive scalarization is both a necessary and 
a sufficient condition to obtain POSS. 

In this paper, we obtain the same characterization as a particular 
instance of a general approach in an alternative simpler way. Using the 
powerful tools of vector linear programming, we can obtain all POSS either 
as efficient solutions of multiple-objective linear problems, or as solutions 
of parametric linear problems, or as minimax solutions of scalar games, or 
as solutions of weighted minimax problems. These approaches lead us, by 
means of a finite set of POSS, to obtain all POSS. The POSS of this finite 
set are the efficient extreme solutions for a multiple-objective linear problem. 

The paper is organized as follows. Section 2 states the general setting 
where we formulate the multicriteria matrix games and recall the concept 
of POSS. Section 3 defines a multiple-objective linear problem (MOLP) 
whose efficient solutions coincide with the POSS. In addition, a necessary 
and sufficient condition for the existence of Pareto saddle-point strategies is 
obtail~ed, and some examples showing these concepts and the solution 
method proposed in the paper are included. Associated with this MOLP, 
there exist several scalarizations whose solutions have the same property. 
Section 4 is devoted to the introduction and interpretation of the different 
parameterizations proposed. Finally, Section 5 concludes the paper. 

2. Model and Previous Results 

We consider a two-person finite game in normal form (matrix game) 
with a payoff matrix A with n rows and m columns. Each element a,~ of the 
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matrix A is a k-dimensional vector (@(I) . . . . .  ao.(k)). We define individual 
matrices of  dimension n • m as 

{au(t)}, t= 1 , . . . ,  k. 

The players are represented by P1 (the minimizer, who chooses rows) 
and P2 (the maximizer, who chooses columns). As usual, the mixed strategy 
spaces for players P1 and P2 are 

F l=  x s N ' :  ~ xi = 1,xi)_O, i=  1 . . . . .  n , (1) 

j ~ l  

We remark that the pure strategies for both players are the extreme 
points of  F ~ and F 2. It is easy to see that the extreme points of l '1 [respec- 
tively, F 2 ] are e i e N  n, i=  1 , . . . ,  n [ e J e N " , j  = 1 , . . . ,  m], where e i is a vector 
with 1 in the ith coordinate and zero everywhere else. 

Choosing x e F  t and y e F  2 implies that the expected payoff of the game 
is 

v(x ,  y )  = x ' A y  = [v~ (x ,  y )  . . . .  , v~ (x ,  Y)I, (3) 

where 

vl (x ,  y )  = x ' A ( l ) y ,  l=  1 , . . . ,  k .  (4) 

In the sequel, the transpose operator t will be omitted when its use is clear. 
Every strategy x e F  I [respectively, y ~ F  2] defines security levels ~1(x) 

[respectively, _vl(y)] as the payoffs with respect to every criterion vt, 
l = 1 . . . . .  k, when P2 [respectively, P1] bets to minimize [respectively, max- 
imize] the criteria (Ref. 2). Hence, 

vl (x) = max vl(x ,  y ) ,  l=  1 . . . . .  k,  (5) 
y~F 2 

vl(y) =rain vt (x ,  y), l=  1 . . . . .  k, (6) 
xEF I 

and the security levels are k-tuples denoted by 

O(x) = [01 (x) . . . . .  0h (x)], (7) 

~ ( y )  : [~ )1  (Y)  . . . . .  -~k (Y)]. (8) 

It must be remarked that, for a given strategy x for P1, the security levels 
~t (x), l=  1 . . . . .  k, might be obtained for the player P2 by different strategies. 
Using our notation, we now introduce the definition of POSS given in 
Ref. 2. 
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Definition 2.1. A strategy x * e F  1 is a Pareto-optimal security strategy 
(POSS) for P1 iff there is no x e F  1 such that 6(x*)> ~(x), ~(x*)~ r3(x). 

Similarly, one can define POSS for P2. 

We now introduce the general multiple-objective linear problem and 
state some properties about it: 

(MOLP) rain Cx, 

s.t. Ax<_b, 

x>_O, 

where CE~ pxq, A ~  r• b ~  r. 

We can consider the set of efficient vectors as the solution set for this 
problem. The efficient solutions (Ref. 8) are usually defined as follows. 

Definition 2.2. A feasible solution x* o f (MOLP)  is an efficient solution 
iff there does not exist x feasible, such that Cx <_ Cx*, Cx 4: Cx*. 

Associated with the problem (MOLP) there is a family of parametric 
linear problems, 

(P(w)) min wtCx, 

s.t. Ax<_b, 

x>_O, 

i=l 

The equivalence between both problems is well known and is given by 
the following theorem. 

Theorem 2.1. x* is an efficient solution of (MOLP) iff 3w~ W ~ such 
that x* is an optimal solution of (P(w~ 

See Ref. 9 for a proof. The characterization of POSS that we propose 
is based on this theorem. 

3. Determination of POSS 

As was pointed out by Ghose in Ref. 1, although a way to determine 
all POSS of a player is through scalarization, other methods must not be 
discarded. We consider an alternative approach to the one proposed in Ref. 
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1, which simplifies very much the proofs of the characterizations given. The 
main goal of this paper is to prove that a necessary and sufficient condition 
for a strategy to be a POSS is to be an efficient solution of a MOLP. 

Recall that, for a strategy x ~ F  ~, the ith security level for player P1 was 
defined in (5). This is a scalar linear program, so it has an optimal solution 
among the extreme points of  F2; hence, 

~t(x) = max ~ xia~j(l), (9) 
j = l  . . . . .  m i =  1 

or in vector form 

~)l(x) = max xA( l ) .  (10) 

Now, we introduce the following multiple-objective linear program, called 
the multicriteria linear game problem (MLGP) 

(MLGP) min vl . . . . .  vx, 

s.t. xA(l)  <_ (vl . . . . .  vl), l= 1 . . . .  , k, 

~ xi=l, 
i = 1  

x>O, v ~  k. 

The main theorem of  this section is the following. 

Theorem 3.1. A strategy x * e F  ~ is a POSS and v* = (v* . . . . .  v~' ) is its 
security level vector iff (v*, x*) is an efficient solution of problem (MLGP). 

Proof. Let x* be a POSS. Then, there is no x e F  ~ such that 
~(x) < O(x*), ~(x)4:~(x*) by definition. From (10), this is equivalent to 

(max x A ( 1 ) , . . . ,  max xA(k))  < (max x ' A ( 1 ) , . . . ,  max x*A(k)),  

(max xA (1) . . . . .  max xA (k ) ) ~ (max x*A (1) . . . . .  max x*A (k ) ) ; 

hence, x* is an efficient solution of the problem 

rain (max xA(1) . . . . .  max xA(k));  
x~ :F  1 

now, using the usual transformation of minmax into linear problems (Ref. 
10), the above minmax problem is equivalent to 

(MLGP) min v l , . . . , v ~ ,  

s.t. xA(1) < ( v l , . . . ,  vl), l=  1 , . . . ,  k, 

~ xi = 1, 
i = l  

x>_O, v e ~  k. 
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Conversely, suppose that an efficient solution (v*, x*) of (MLGP) is not a 
POSS. Then, there exists )?eF J such that 

(max ffA(1) . . . . .  max 2A(k))  < (max x 'A(1)  . . . . .  max x*A(k)) ,  

(max 2A(I) . . . . .  max YeA(k)) ~ (max x'A(1), . . . .  max x*A(k)).  

Taking 0= (01 , . . . ,  Ok), where 

~ = max 2A (l), l= 1 . . . . .  k, 

the vector (g,)?) is a feasible solution of (MLGP) dominating (v*, x*). This 
is a contradiction. [] 

The theorem above is very important for several reasons. First, just as 
linear programming can be used to find the value and the optimal strategies 
for any scalar two-person zero-sum matrix game, vector linear programming 
can also be applied to find jointly all POSS for a player and its security 
levels. This emphasizes the similarity existing between both problems. 

Secondly, it must be remarked that, as usual in (MOLP), obtaining 
the efficient extreme solutions suffices to generate all POSS. Procedures for 
computing (characterizing) all maximally efficient facets have been proposed 
by different authors (Refs. 11-14). Thus, existing algorithms valid for the 
determination of efficient solutions of (MOLP), as for instance ADBASE 
(Ref. 15), can be applied to calculate all POSS. 

Example 3.1. 
in Ref. 1 : 

Consider the following payoff matrix proposed by Ghose 

F(1,3) (2,1)J 
A = [ ( 3 , 1 )  (1,2) . 

L(1,1) (3,3) 

Using the software package ADBASE (Ref. 15), we have obtained the effi- 
cient extreme solutions of the following problem: 

min (vl, v2), 
s.t. x l + 3 x 2 + x 3 ~ v l ,  

2xl +x2+ 3x3<_vl, 

3Xl + x2 + x3 <_ v2, 

xl + 2x2+ 3x3<_v2, 

x l+x2+x3  = 1, 
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The extreme efficient solutions are 

(~(x ~ ), x ~ ) = (9/5, 9/5, 2/5, 2/5, 1/5), 

(~(x2), x 2) = (7/3, 5/3, 1/3, 2/3, 0), 

03(x3), x 3) = (5/3, 7/3, 2/3, 1/3, 0), 

and the following set gives all POSS for player P1 : 

ch{(2/5, 2/5, 1/5), (1/3, 2/3, 0)} U ch{(2/5, 2/5, 1/5), (2/3, 1/3, 0)}, 

where ch{a, b} is the convex hull of  the vectors a, b. 
Finally, Theorem 3.1 leads us to characterize when a pair of  POSS are 

Pareto saddle-point strategies. A strategy pair x ~ F  t and y ~ F  2 is said to be 
a pair of  Pareto saddle-point strategies if ~(x) = v(y);  see Ref. 6. In multiple- 
objective programming, an ideal solution is a feasible solution which 
minimizes simultaneously all the objectives. Considering the framework of 
multiple criteria games, then we say that x* is an ideal strategy for player 
P1 if x* minimizes ~/(x), VI= 1 , . . ,  k (analogously for P2). However, the 
existence of an ideal strategy for a player does not imply the existence of  
Pareto saddle-point strategies for the multiple criteria game, because the 
security levels for each scalar game A(1), I= 1 . . . .  , k may be achieved with 
different strategies by the other player. 

Corollary 3.1. x*~F ~ and y * e F  2 are a pair of  Pareto saddle-point 
strategies for player P1 and P2 if and only if x* and y* are ideal strategies 
for player P1 and P2, respectively. 

As each ideal strategy is a saddle-point strategy for every scalar game 
A(I), l = 1 , . . . ,  k, the corollary above is equivalent to Theorem 4.1 in 
Ref. 2. 

Some examples are now considered. 

Example 3.2. Consider the following game matrix, proposed by Ghose 
and Prasad in Ref. 2: 

(2, 3) (3, 2) 1 
A =  (4,1) (2, 3) " 

There are Pareto-optimal saddle-point strategies for the game, which for 
player P1 is (2/3, 1/3) and for player P2 is (1/3, 2/3). It must be remarked 
that both strategies are ideal strategies for players P1 and P2, respectively. 
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Example 3.3, Consider the payoff matrix 

[(1,3)  (3, 2)1 
A=[_(6,1) (2,3) " 

In this game, the player P1 has an ideal strategy (2/3, 1/3), However, the 
POSS for player P2 are given by the convex hull of the strategies (1/3, 
2/3) and (1/6, 5/6). Obviously, in this case, there does not exist an ideal 
strategy for player P2, and there is not a pair of Pareto saddle-point 
strategies. 

4. Sealarization Methods 

The characterization given by Theorem 3.1 permits several ways of 
scalarization for the solution of a multicriteria game. In particular, the 
scalarization proposed by Ghose in Ref. 1 is obtained as a particular case. 

The first scalarization that we consider is given through a scalar linear 
problem associated with (MLGP) : 

k 

(P()~)) min }-', ~L,vl, 
/ = 1  

s.t. x A ( l ) < ( v l ,  . . . , v l ) ,  1= 1 , . . . , k ,  

~ x i = l ,  
i = l  

x > O ,  V ~  k, 

~ , ~ A 0 = { ~ k : ~ , > 0 ,  ~ ~,1=1}. 
1=1 

Theorem 4.1. A strategy x*eF  l is a POSS and v* is its associated 
security level vector iff there exists ~,*sA ~ such that (v*, x*) is an optimal 
solution of problem (P(2~)). 

The proof follows by using the characterization of POSS given in 
Theorem 3.1 and by applying the scalarization of Theorem 2.1. 

Every component ,~t of the parameter 3, = (3,~ . . . . .  2,k) cA 0 can be inter- 
preted as the relative importance the player P1 assigns to the scalar game 
with matrix A ( l ) .  Thus, given a parameter 2~, it induces a weak order among 
all POSS by means of the scalarization of their security levels. 

Besides, each optimal strategy x* is associated with a polyhedral set 
A ( x * ) c A  ~ so that (v*, x*) is an optimal solution of (P(~)), V~A(x*) .  
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This set can be easily obtained, because 

A(x*) = {2~A~ ~.'(z- C)(x*)_<o}, 
where (Z-C)(x*)  is the reduced cost matrix associated with the efficient 
solution x* (Ref. 15). The set A(x*) could be seen as a sensitivity region, 
because small changes in the parameters do not change the optimal strategy 
as soon as this region has nonempty relative interior. It is interesting to 
remark that the above parametric regions associated with the extreme solu- 
tions are usually bigger than those associated with the rest of  POSS. These 
sets induce a partition in A ~ and in the set of  all POSS for player P1. 

Let F~p be the set of all Pareto-optimal security strategies for P1 (simi- 
larly Fs~ for P2), i.e., 

F~p= {(O(x), x): x s r  1, x is a POSS} ; 

let Fsp(x) be the set of  optimal solutions of  (P(Z)), V2eA(x),  and 
ext (MLGP) the set of  efficient extreme solutions of (MLGP).  From the 
above discussion, one gets the following theorem. 

Theorem 4.2. F~p = ~_)x~ext(MLGP) I"sp (X). 

Proof. Let x be a POSS. Then, from Theorem 4.1, there exists Z~176 
such that x is an optimal solution of  (p()  o)). Now, as (p(~ 0)) is a linear 
program, it has at least an extreme point x* of  its feasible region which is 
also an optimal solution. Hence, 2 ~ belongs to A(x*), which implies that 
X~rsp(X*). 

Conversely, let x~ for some x~ext(MLGP).  Then, x ~ is an opti- 
mal solution of  (P(2))  for all 2 ~ A ( x ) _  A ~ Hence applying Theorem 4.1, 
it follows that x ~ is a POSS. [] 

The following example illustrates the theorem above. 

Example 4.1. Consider the game described in Example 3.1. The goal 
is to obtain the decomposition given by Theorem 4.2 of  the set F~p and the 
partition of A ~ in the sets A(xi), i=  1, 2, 3, which give the sensitivity regions 
associated to each efficient extreme strategy x i, i = 1, 2, 3. 

The sensitivity regions A(xl), i=  1, 2, 3, are given by 2 ( Z - C ) ( x  i) <0. 
In this example, as soon as 

A ~ {(~,, l - X ) :  Z~[O, 11}, 

the sets A(x ~) can be described with only one parameter, that is 

A(x~) = {2 : 2.E[0, 1], ( 2 , 1 - ~ ) ( Z - C ) ( x i ) ~ _ O } ,  
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and they correspond to 

A(x' ) = ch{ 1/5, 4/5}, 

h (x  2) = ch{0, 1/5}, 

A(x 3) = ch{4/5, 1 }. 

Finally, using inside these sets the usual sensitivity analysis of linear pro- 
gramming, one can obtain the sets Fsp (x/) ,  i--- 1, 2, 3, 

Fsp(X 1 ) = {(2/5, 2/5, 1/5)}, 

rsp(X 2) = ch{(2/5, 2/5, 1/5), (2/3, 1/3, 0)}, 

l"sp(X 3 ) = ch{(2/5, 2/5, 1/5), (1/3, 2/3, 0)}. 

Example 4.2. In this example, we consider the games proposed in 
Examples 3.2 and 3.3. Our aim is to obtain the decomposition given by 
Theorem 4.2 and the partition of A ~ 

As in these examples, there exists an ideal solution x*= (2/3, 1/3) for 
P1, the sensitivity region A(x*)= [0, 1], and the set Fsp(X*)= {(2/3, 1/3)}. 

The importance of POSS as a solution concept was pointed out in Refs. 
1-2. Obtaining the sets of POSS for the players is useful if one wants to check 
the existence of solutions based upon the idea of security levels. Another way 
to obtain those sets consists of defining scalar criterion games and proving 
that the minimax [respectively, maxmin] solutions of these games are also 
POSS for the corresponding players. 

As a consequence of Theorem 3.1, we give also a very easy proof of 
the main result in Ref. 1 ; that is, being a saddle-point solution of a zero- 
sum game is a necessary and sufficient condition for a strategy to be a POSS. 

Let x, y be two POSS for players P1 and P2, respectively, i.e., x~F]p, 
y~Fffp. As the vectors of security levels v(y), ~(x) must dominate every 
payoff, it holds that 

v(y) <_ xAy <_ ~(x) , (11) 

which leads to the characterization of all POSS by means of scalar criterion 
games. 

Consider a game where the player J1 chooses his strategies in F 1, the 
player J2 chooses k different strategies (yl . . . . .  yk) in F 2, and the payoff 
function is given by 

k 
v(x, y, ~,) = ~ s (12) 

l = l  
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where y_ = ( y l , . . . ,  yk), being yleF 2, l=  1 . . . . .  k, and 2 =  (A.1 . . . . .  &~)eA ~ 
Hereafter, we call (J(s this game. 

As soon as (J(Z)) is a scalar game, the usual definition for minimax 
strategy (Ref. 10) holds for both players. Then, we can state the equivalence 
between POSS and the minimax strategy for J()0. 

Theorem 4.3. A strategy x*EF ~ is POSS iff there exists a s ~ such 
that x* is a minimax solution of (J(~,)). 

Proof. Using the fact that (J(;t)) is a scalar zero-sum matrix game, x* 
is a minimax strategy for (J(A,)) iff it is an optimal solution of 

k 

min max Y" ,~IxA(l)J, 
xer~ (yl . . . . .  Y k)e(Fz)k 1= 1 

and iff it is an optimal solution of 
k k 

min ~ ~,1 max x A ( l ) J = m i n  = 21gl(x). 
x~:FI / = 1 Y l~(F2) x~FI  / 2 1  

Now, as the last formulation is equivalent to (P(/~)), then x* is a minimax 
strategy for (J(~)) iff (g(x*), x*) is an optimal solution of (P(Z)). [] 

Although this result was already known (see Theorem 3.3 in Ref. 1), 
the proof above is simpler than the one presented in Ref. 1. That paper 
showed that a certain set, which is the extension of the set of security level 
vectors, is convex and polyhedral. The new proof, based on the powerful 
tools of the (MOLP), follows easily from the equivalence between the scalar 
problem (P0-)) and the game (J(),)). 

From Theorem 4.2, it follows that, given x*eFlp, then (~(x*), x*) is 
an optimal solution of the problem (P(A)), V2eA(x*). The theorem above 
asserts that the same x* is also a minimax strategy for the game (J(~,)), 
gAEA(x*). However, obtaining all POSS by means of the games (J(~,)) leads 
us to the problem of how to determine the minimal number of scalarization 
coefficients to generate all POSS, while using the (MOLP) approach, it is 
only necessary to identify the set of efficient extreme solutions. 

Moreover, it is possible to give another scalarization to get all POSS 
based on the concept of weighted minimax problem. For each 

we W-- {We•k: w>O}, 

consider the following problem: 

(WMP)(w)) min max WlOl(X), (13) 
x ~ F  1 1 <_l<_k 
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or equivalently, 

min 
x e F  I 

s.t. 

where 

Z~ 

x A ( l )  < (vl . . . . .  vt),  

W I �9 0 l ~_~ 2;, 

zeR. 

/ = l , . . . , k ,  

l = l , . . .  ,k ,  

The following theorem states that the solution of (WMP(w)) with 
strictly positive w (i.e., w> 0) is both a necessary and sufficient condition 
for a strategy to be a POSS for P1. 

Theorem 4.4. A strategy x* e F ~ is POSS for P 1 in the original multicrit- 
eria game if and only if (~(x*), x*) is an optimal solution to (WMP(w)) 
with we W. 

Proof. From Theorem 1 in Ref. 16, (~(x*), x*) is an efficient solution 
to (MLGP) iff there is a w~ W such that Q3(x*), x*) is an optimal solution 
to (WMP(w~ Now, from Theorem 3.1, this is equivalent to be a POSS 
for player P1 in the original game. This concludes the proof. [] 

5. Conclusions 

In earlier works, the concept of Pareto-optimal security strategy (POSS) 
has been introduced and a necessary and sufficient condition was proved to 
characterize POSS for a player in a two-person zero-sum matrix game. That 
method requires the specific determination of several coefficients which are 
the basis of the scalarization proposed and, as is suggested in Ref. 1, that 
is not an easy task. In this paper, new necessary and sufficient conditions 
based on vector linear programming are proved which characterize all POSS. 
This methodology leads us to obtaining all POSS, once the efficient set of 
a particular multiple-objective linear program is obtained. Several scalariza- 
tions are proposed which are direct consequences of the main result. In 
particular, the above-mentioned necessary and sufficient condition (Ref. 1) 
is obtained as a special instance. 

Finally, it should be remarked that the proposed approach states the 
relationship existing in the solution method between the scalar zero-sum 
matrix games and the multicriteria zero-sum matrix games. The first one 
can be solved using linear programming and the second one using vector 
linear programming. 
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